Performance table flame cutting Gas-mixing nozzles "Hi Speed" Acetylene / Oxygen

ZIN417 1/87

Material- thickness	Nozzle		Pressures (bar)		Cutting speed	Kerf	Consumption Itrs / h	
mm	mm	No.	Acetylene	Oxygen	mm / min	mm	Acetylene	Oxygen
3	3 - 6	0	0.2	8.4	650	1.3	400	1980
6					600			
6					600			
9	6 - 12	1	0.2	7.0	575	1.6	510	2800
12					550			
12	12 - 25	2	0.2	7.7	500	1.9	510	3700
20					475			
25					450			
25					430			
30	25 - 38	3	0.3	7.0	415	2.2	700	4850
38					400			
38					370			
50	38 - 65	4	0.3	7.7	345	2.7	700	6900
65					320			
65					240			
80	65 - 100	6	0.3	6.0	210	3.4	970	9300
100					180			
100					240		_	
125	100 - 150	8	0.3	8.8	210	3.4	970	12250
150					180			
150					150			
175	150 - 200	10	0.3	7.0	138	4.3	1050	16400
200					125			

The indicated values are approximate values and only refer to unalloyed steel up to 0.3 % C and if using oxygen with a purity of 99.5 % minimum.

Nozzle size and the appropriate adjusting values have to correspond to the effective cutting thickness.

The indicated pressures are overpressures in bar, each mesured on the torch entry. In case of higher-powered machines, pressure drops in the hose pipes have to be taken into account.

The indicated cutting speeds refer to straight cuts with a rust-free and scales-free surface. Cutting areas of quality class I according to DIN 2310 will be obtained.

The indicated cutting speeds have to be reduced for: shaping cuts with small radii: by approx. 10 %, angular cuts of 30°: by approx. 25 %, angular cuts of 45°: by approx. 45 %.